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Abstract
1.	 In this paper, the Adomian Decomposition Method (ADM) and Vari-

ational Iteration Method (VIM) are applied to solve boundary value 
problems for higher-order Volterra integro-differential equations. The 
numerical results obtained with minimum amount of computation are 
compared with the exact solutions to show the efficiency of the tech-
niques. The results show that the variational iteration method is of high 
accuracy, more convenient and efficient for solving integro-differential 
equations.

Keywords: Adomian decomposition method, variational iteration method, 
integro-differential equation.

2.	 Introduction In this work, we consider the Volterra integro-differential 
equation of the second kind as follows:

	

:with the initial or boundary conditions

,)r = 0,1,2,...,(n − 1 	,u(r)(a) = αr 	 )2(

,)r = n,(n + 1),...,(k − 1 	,u(r)(b) = βr 	 )3(
where u(j)(x) is the jth derivative of the unknown function u(x) that will be 
determined, K(x,t) is the kernel of the equation, a ≤ x ≤ b, f(x) and pj(x) are 
analytic functions, G is analytic function of u, and αr; 0 ≤ r ≤ (n − 1) and β

r
; 

n ≤ r ≤ (k − 1) are real finite constants.
In recent years there has been a growing interest in the integro-differential 

equation. The integro-differential equations be an important branch of mod-
ern mathematics. It arises frequently in many applied areas which include 
engineering, electrostatics, mechanics, the theory of elasticity, potential, and 
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mathematical physics [3,4,6,10,27].
Recently, Wazwaz (2001) presented an efficient and numerical procedure 

for solving boundary value problems for higher-order integro-differential 
equations. A variety of methods, exact, approximate and purely numerical 
techniques are available to solve nonlinear integro-differential equations. 
These methods have been of great interest to several authors and used to 
solve many nonlinear problems. Some of these techniques are Adomian de-
composition method [4,24], modified Adomian decomposition method [30], 
Variational iteration method [7,32,33] and homotopy perturbation method 
[30] and many methods for solving integrodifferential equations [2,3,6,16–
21,28].

More details about the sources where these equations arise can be found 
in physics, biology, and engineering applications as well as in advanced 
integral equations. Some works based on an iterative scheme have been 
focusing on the development of more advanced and efficient methods for 
integro-differential equations such as the variational iteration method which 
is a simple and Adomian decomposition method [8,9,24,31], and the modi-
fied decomposition method for solving Volterra-Fredholm integral and inte-
gro-differential equations which is a simple and powerful method for solving 
a wide class of nonlinear problems [24]. The Taylor polynomial solution of 
integro-differential equations has been studied in [27]. The use of Lagrange 
interpolation in solving integro-differential equations was investigated by 
Marzban [26]. The VIM has been successfully applied for solving integral 
and integro-differential equations [5,24,30].

A variety of powerful methods has been presented, such as the homoto-
py analysis method [30], homotopy perturbation method [6,30], operational 
matrix with Block-Pulse functions method [3], variational iteration method 
[5,30] and the Adomian decomposition method [4,24,30]. Some fundamental 
works on various aspects of modifications of the Adomian’s decomposition 
method are given by Araghi [1]. The modified form of Laplace decomposi-
tion method has been introduced by Manafianheris [25]. Babolian et. al, [3], 
applied the new direct method to solve nonlinear Volterra-Fredholm integral 
and integro-differential equation using operational matrix with block-pulse 
functions. The Laplace transform method with the Adomian decomposi-
tion method to establish exact solutions or approximations of the nonlinear 
Volterra integro-differential equations, Wazwaz [31]. Recently, the authors 
have used several methods for the numerical or the analytical solutions of 
linear and nonlinear Volterra and Fredholm integro-differential equations 
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[11–15,22–24,30].
In this work, our aim is to solve a general form of boundary value problems 

for higher-order Volterra integro-differential equations by using the ADM 
and VIM.

3.	 Volterra Integro-differential Equation of Second Kind  We consider 
the Volterra integro-differential equation of the second kind as follows:

(4)
We can rewrite Eq.(4) as follows:

(5)

Let us set L−1 is the multiple integration operator as follows:

L-1(.):=

(6)
    k-times                                                                  	

From Eq.(5) and Eq.(6)
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(7)

We can obtain the term  from the initial conditions. From 

[8], we have
(8)

		  also

(9)

By substituting Eq.(8)and Eq.(9) in Eq.(7) we obtain

(10)

We set,
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So, we have one-dimensional integro-differential equation as follows:

Description of the Methods
In this section, we present the semi-analytical techniques based on ADM 

and VIM to solve Volterra integro-differential equation:
3.1	 Adomian Decomposition Method (ADM)
The ADM is applied to the following general nonlinear equation [1,30]:
	 Lu + Ru + Nu = f(x),	 (11)
where u is the unknown function, L is the highest-order derivative which 

is assumed to be easily invertible, R is a linear differential operator of order 
less than L and Nu represents the nonlinear terms and f is the source term. 
Applying the inverse operator L−1 to both sides of Eq.(11) and using the 
given conditions we obtain

	 u = F(x) − L−1(Ru) − L−1(Nu),	 (12)
where the function F(x) represents the terms arising from integrating the 

source term f(x). The nonlinear operator Nu = G(u) is decomposed as

	 ,	 (13)
where An; n >0 are the Adomian polynomials determined formally as fol-

lows:

.
The Adomian polynomials were introduced in [30] as:
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The standard decomposition technique represents the solution of u in 
Eq.(11) as the following series:

(14)

The nonlinear terms G(u(t))      and is derivative opera-
tor), are usually represented by an infinite series of the so called Adomian 
polynomials as follows:
		
	 G(u(t)) = Ai,	D j(u(x)) = 
		

where Ai and Bij (i ≥ 0,j = 0,1,...,k − 1) are the Adomian polynomials. 
where, the components u0,u1,... are usually determined recursively by

u0 = F(x),	                             (15)                                                                  
 un+1 = −L-1(Run) − L−1(An).
Substituting (12) into (15) leads to the determination of the components 

of u. Having determined the components u1,u2,..., the solution u in a series 
form defined by Eq.(14).

Now, we apply ADM to find the approximate solutions of Eq.(11), we can 
write the iterative formula as follows:

	 u0(x) = F(x),
(16)

un+1(x)      =
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Convergence aspects of the ADM have been investigated in [19]. For later 

numerical computation, let the expression

Υn(x) =  

denote the n-term approximation to u(x).
3.2	 Variational Iteration Method (VIM)
This method has been applied to solve a large class of linear and nonlinear 

problems with approximations converging rapidly to exact solutions.
The main idea of this method is to construct a correction functional form 

using general Lagrange multipliers. These multipliers should be chosen such 
that its correction solution is superior to its initial approximation, called trial 
function. It is the best within the flexibility of trial functions. Accordingly, 
Lagrange multipliers can be identified by the variational theory [29,30]. A 
complete review of VIM is available in [7,16].

The initial approximation can be freely chosen with possible unknowns, 
which can be determined by imposing boundary/initial conditions. To illus-
trate, we consider the following general differential equation:

	 Lu(t) + Nu(t) = f(t),
	 (17)
where L is a linear operator, N is a nonlinear operator and f(t) is inhomo-

geneous term. According to variational iteration method [5,24], the terms of a 
sequence un are constructed such that this sequence converges to the exact 
solution. The terms un are calculated by a correction functional as follows:

(18)
The successive approximation un(t),n ≥ 0 of the solution u(t) will be read-

ily obtained upon using the obtained Lagrange multiplier and by using any 
selective function u0.

The zeroth approximation u0 may be selected using any function that just 
satisfies at least the initial and boundary conditions with λ determined, sev-
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eral approximations un(t),n ≥ 0 follow immediately. Consequently, the exact 
solution may be obtained by using

u(t) u(t)=limun(t)                   (19)             
.	     n→∞

4.	 Numerical Results
In this section, we present the numerical techniques based on ADM and 

VIM to solve Volterra integro-differential equations:
Example 1.
Consider the Volterra integro-differential equation as follow:

	 (20)
with the boundary conditions:
	 u(0) = 1, u(1) = 1 + e, u’’(0) = 2, u’’ (1) = 3e.	 (21)
	The exact solution is	 u(x) = 1 + xex.
The recursive of ADM

	 ,	 (22)
Using the recursive algorithm,



كانون اول 252020

ربع سنويّة العدد الثامن كانون أولل 2020

where

,
where the constants A = u’(0) and B = u’’’(0) can be determined by im-

posing the boundary condition (21) in u1(x), then we have
A = 0.9740953834, B = 3.1897820557 for Υ2

A = 0.9944789128, B = 3.0382130987 for Υ3

A = 0.9989095252, B = 3.0073098797‘ for Υ4

The rest of components of the iteration formulas can be obtained in the 
same manner.

Using VIM, the iterative formula can be written in the following form:

Now, starting with the initial solution

where the constants A = u’(0) and B = u’’’(0) can be determined by impos-
ing the boundary condition (21) in u1(x), then we have

A = 0.9991323308076788,      
B = 3.005849664438371.
The rest of components of the iteration formulas can be obtained in the 

same manner.Conclusion
We discussed the ADM and VIM to solve boundary value problems for 

higherorder integro-differential equations. The results obtained with the 
minimum amount of computation are compared with the exact solutions to 
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show the efficiency of the techniques. The results show that the variational 
iteration

 method is of high accuracy, more convenient and efficient for solving in-
tegro-differential equations.
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